Semiconducting Nanowire Platform for Autonomous Sensors

SiNAPS

Tyndall National Institute
(Coordinator)

Institut für Photonische Technologien e.V

École Polytechnique Fédérale de Lausanne

Imperial College of Science and Technology

Aquamarijn Research BV
Semiconducting Nanowire Platform for Autonomous Sensors

- Vision
- Project Objectives
- Highlights
- Impact
ICT and consumer electronics account for approximately 15% of global residential electricity consumption

Data: IEA report (2009)

Comparing Energy Use

Comparison of a typical television set-top box configuration with Energy Star-rated appliances and devices.

<table>
<thead>
<tr>
<th>Average Kilowatt-Hours a Year</th>
<th>HD Set-Top Box</th>
<th>HD DVR</th>
<th>Time in Use Each Day</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical HD television set-top box configuration</td>
<td>446</td>
<td>171</td>
<td>275</td>
</tr>
<tr>
<td>Refrigerator (21-cubic-foot)</td>
<td>415</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LCD television (42-inch)</td>
<td>181</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Desktop computer</td>
<td>175</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compact fluorescent light bulb (15-watt)</td>
<td>17</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Natural Resources Defense Council

THE NEW YORK TIMES
By 2030, energy use by household ICT and consumer electronics will triple consuming 1,700 TWh.

Maps: http://en.wikipedia.org
Data: IEA report (2010)
Reduce energy consumption per chip

Eric Pop group
Harvest ambient energy efficiently

Images: http://en.wikipedia.org
Manage efficiently power at the nano- and macro-scale

"It's a hybrid."

© Original Artist
Utilise resources effectively
A cost-effective technology enabling material platform
- Nanotech-based solar energy harvesting (generation II, III PVs)
- Energy-efficient ICT
- ICT for energy efficiency
Semiconducting Nanowire Platform for Autonomous Sensors

Vision

Project Objectives

Highlights

Impact
<table>
<thead>
<tr>
<th>Science & Technology objectives</th>
</tr>
</thead>
</table>

S&T1: Nanoscale energy harvesting system based on SiNWs
- develop core-shell semiconducting nanowires for efficient light absorption and charge separation
- fabricate high-efficiency PV mini-modules

S&T2: Power-efficient, highly-selective/sensitive NW-based chemical sensing
- develop surface functionalisation schemes on nanowires for selective binding
- demonstrate sensing of streptavidin using immobilised biotin

S&T3: Microfluidics for miniaturised nanowire-based chemical sensor
- develop a microfluidic delivery system to be integrated with the chemical nano-sensor.

S&T4: Efficient power management and data processing for micron-sized devices
- develop a low-power complete CMOS electronics sensing interface with an embedded energy management concept

S&T5: Integration into a single device of dimensions < 1mm³
- integrate the individual modules into an Autonomous Platform with a target volume at and well beyond the state-of-the-art, namely, 4mm³ and an ultimate target of smaller than 1 mm³.
Vision

Project Objectives

Highlights

Impact
properties of a-Si:H from first-principles

D.V. Lang et al, PRB 25, 5285 (1982)

log of DOS vs energy (eV) for aSi:H (12%H)

M. Legesse, M. Nolan and G. Fagas, unpublished
A miniaturised solar cell with 7.29% efficiency was studied. The cell has the following characteristics:

- **Contact area:** 7.02 mm²
- **Efficiency:** 7.29%
- **Open circuit voltage:** 476 mV
- **Current density:** 27.03 mA/cm²
- **Filling factor:** 0.562

The voltage-current characteristic is shown in the graph, with data points represented for AM 1.5 and dark conditions. The graph highlights the performance of the cell under different illuminations.

PV mini-modules

$V_{OC} = 1.83 \text{ V}$
Active area $\approx 5.9 \text{ mm}^2$
$P_{out} > 150 \mu\text{W}$
Miniaturised microfluidic delivery platform

nanowire array

microfluidic channel

1 x 1 mm

Second generation device

Device 3
150 μm CW

Device 4
100 μm CW

Scale bar 500 μm
CW = Channel width
surface functionalisation demonstrating biotin-streptavidin binding

XPS-data

attached dye-conjugated streptavidin
Power Management Electronics

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value and/or Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Main Chip Size</td>
<td>~ 500µmX700µm excl PADs inc test structures</td>
</tr>
<tr>
<td>Mini@sic Chip Area (including PADs)</td>
<td>1525X1525µm²</td>
</tr>
<tr>
<td>Mini@sic Chip Area (without PADs)</td>
<td>1100X1100µm²</td>
</tr>
<tr>
<td>Average Power Consumption (Power Management)</td>
<td>0.3µW</td>
</tr>
<tr>
<td>Average Power Consumption (Integrated Temperature Sensor)</td>
<td>2µW</td>
</tr>
<tr>
<td>Package</td>
<td>CLCC 44</td>
</tr>
</tbody>
</table>
fundamentals of efficient and accurate simulation tools

M. Iakovidis, GF in preparation

D. Sharma, H. Arefi, GF, submitted
miniaturisation roadmap & integration

Issue1
- Targets easy experimenting

Issue2
- Targets miniaturization while maintaining specifications
- Test bed helps with proof of principle
- Chip size 25x25 [mm]
- Integration based on PCB
- Horizontal Single Substrate or Horizontal Multiple Substrate (depending on project phase)
- Just intended for R&D testing

Issue3
- Targets miniaturization while losing minimal functionality
- Proof of concept first SiNAPS Node
- Chip size 2x2 [mm]
- Integration based on Polyimide or Ceramic substrate
- Single Substrate with support for 3D integration with battery and radio
- Target Date for Integration M22

Integration
- Integration based on CMOS Die
- Integration based on CMOS Die
- Single Substrate with support for 3D integration with battery and radio
- Target Date for Integration M30

Test bed
- Helps with proof of principle
- Proof of concept first SiNAPS Node
- Chip size 2x2 [mm]
- Integration based on Polyimide or Ceramic substrate
- Single Substrate with support for 3D integration with battery and radio
- Target Date for Integration M22

Large Bonding Area for conductive adhesive

Thin flexfoil

Radio chip

Towards issue 2
Semiconducting Nanowire Platform for Autonomous Sensors

- Vision
- Project Objectives
- Highlights
- Impact
Semiconducting Nanowire Platform for Autonomous Sensors

the team!